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Abstract-The Coriolis effect on free convection in a long rotating porous box subject to uniform heat 
generation is investigated analytically. A three dimensional analytical solution is presented for large values 
of the porous media Ekman number. The convection results from internal heat generation which produces 
temperature gradients orthogonal to the centrifugal body force. Two types of thermal boundary conditions 
are considered far the top and bottom walls of the box. The first type is associated with perfectly conducting 
boundaries, i.e. the same temperature is imposed on both the top and bottom walls while the second type 
corresponds to a perfectly conducting top wall and adiabatic bottom wall. The solution to the nonlinear 
set of partial differential equations is obtained through an asymptotic expansion of the dependent variables 
in terms of two small parameters representing the reciprocal Ekman number in porous media and the 
aspect ratio of the domain. Secondary circulation in the form of one or two vortices is obtained in a plane 

orthogonal to the leading free convection plane. 

1. lNTRODUCTlON perature is imposed on them. The second set considers 

Transport phenomena in rotating porous media have 
the top wall to be perfectly conducting and the bottom 

a wide spectrum of applications in engineering and 
wall perfectly insulated. 

geophysics [ 1, 21. The effect of rotation on free con- 
vection is of particular interest from both the practical 
and theoretical points of view. 

Research results [3-71 are available for natural con- 
vection in rotating porous media resulting from gravity 
in the presence of a single fluid or binary mixture. 
However, when a rotating porous matrix is con- 
sidered, an additional body force exists in the form of 
the centrifugal acceleration. This force may generate 
free convection in the same manner as the gravity 
force causes natural convection. Vadasz [I] presented 
an analytical solution to the three-dimensional free 
convection problem in a long rotating porous box 
by using an asymptotic expansion method. The free 
convection resulted there from differential heating of 
the horizontal walis leading to temperature gradients 
orthogonal to the centrifugal body force. Secondary 
circulation was obtained in a plane orthogonal to the 
leading free convection plane as a result of the Coriolis 
effect on the flow. 

This paper presents an analytical investigation of 
the Coriolis effect on free convection in a long rotating 
porous box subject to uniform heat generation. The 
volumetrieahy uniform heat generation introduces 
temperature gradients orthogonal to the centrifugal 
body force while two sets of thermal boundary con- 
ditions are considered for the top and bottom walls 
of the box. The first set considers both walls to be 
perfectly conducting, i.e. the same value of tem- 

2. PROBLEM FORMULATION 
A long rotating fluid saturated porous box subject 

to uniform heat generation is considered (Fig. 1). At 
each point of the flow domain the temperatures of the 
solid and fluid phases are assumed to be equal (Dagan 
[8]). The front, back and the lateral walls are all insu- 
lated. The box has a square cross section of which 
height and width is H., while the subscript * stands 
for dimensional values. The aspect ratio is defined as 
a = H./L. where L. is the length of the box. 

Given @. as the internal rate of heat generation and 
TO as a reference temperature value (e.g. the tem- 
perature imposed on the horizontal boundary) the 
dimensionless temperature can be represented by 
T = (T, - T,,)/(&H?/&) where 1,. is the effective 
thermal conductivity of the porous domain and is 
assumed constant. Free convection occurs as a result 
of the centrifugal body force while the gravity force is 
neglected. The only inertial effects considered are the 
centrifugal acceleration, as far as changes in density 
are concerned, and the Coriolis force. Other than that 
the Darcy’s law is assumed to govern the fluid flow 
(extended to include the centrifugal and Coriolis accel- 
erations), while the Boussinesq approximation is 
applied for the effects of density variations. As the 
width (or height) of the domain is much smaller than 
its length (a small aspect ratio), a Cartesian coordinate 
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NOMENCIATURE 
the aspect ratio of the box, equals 
H./L. 
Ekman number, equals v&/2w,k. 
unit vector in the x direction 
unit vector in the Y direction 
unit vector in the z direction 
unit vector normal to the boundary, 
positive outwards 
the height (width) of the box 
permeability of the porous domain 
the length of the porous domain 
a ratio between the heat capacity of the 
fluid and the effective heat capacity 
of the porous domain 
reduced pressure generalized to 
include the constant component of the 
centrifugal term (dimensionless) 
dimensionless specific flowrate vector 
equals a&, + vC~ + w&, 
internal rate of heat generation 
porous media Rayleigh number 
related to the centrifugal body force, 
equals B,e.H.‘w,‘L.k.Mf/~,.u~*v. 
dimensionless temperature, equals 
(Te - T,,)&./@H? 

To a reference temperature value. 
U horizontal x component of the specific 

flowrate 
V horizontal y component of the specific 

flowrate 
W vertical component of the specific 

flowrate 
X horizontal length coordinate 
Y horizontal width coordinate 
Z vertical coordinate. 

Greek symbols 
4 porosity 
a,* effective thermal diffusivity 
B* thermal expansion coefficient 
0, angular velocity of the rotating box 
V. fluid’s kinematic viscosity 
P fluid’s dynamic viscosity 
ti stream function 
a a dimensionless group, equals Ra,/Ek. 

Subscripts 
* dimensional values 
0 zeroth order 
1 first order. 

Fig. 1. A long rotating fluid saturated porous box subject to 
uniform heat generation. 

system can be used and the component of the cen- 
trifugal acceleration in the Y direction can be-neglected. 
The ratio between the centrifugal force component in 
the y-direction and the corresponding component in 
the x-direction is w,“y./w:x. = yH./xL. = (y/x)a. 
Therefore for length scales in the x-direction higher 
than the width of the box (y/x)a << 1, justifying to 
neglect the y-component of the centrifugal force. By 
assuming steady state conditions the following dimen- 
sionless set of governing equations is obtained 

au au aw 
az+dy+z=O 

ap U= -z-Ra”xTfEk-‘v 

av= -!kaEk-l 
aY 

u 

ap aw= -- 
az 

2 2 2 

a’~+~+~-aU~-V~-W~+~ ~0. 

aY2 ay 

(5) 

Equations (l)-(5) are presented in a dimensionless 
form. The values a,.jH.M,, pea,./k.Mfa, C&H?/&. and 
0. are used to scale the specific flowrate components 
(u., v*, w.), pressure @*), temperature variations 
(T. - To) and the rate of heat generation, respectively, 
where a,. is the effective thermal diffusivity, p. is the 
dynamic viscosity, k. is the permeability of the porous 
matrix and M,is the ratio between the heat capacity of 
the fluid and the effective heat capacity of the porous 
domain. Two different length scales were applied for 
scaling the variables x., y. and z.. Accordingly, 
x = x./L., y = y./H* and z = Z./H.. In equations (2) 
and (3) Ra, is the Rayleigh number mod&d to 
include the centrifugal body force instead of gravity 
in the form Ra, = B.e.H~wc’L.k.Mfll,.cr,.v. and Ek 
stands for the porous media Ekman number defined 
by Ek = v4/2w& where C$ is porosity, w, is the angu- 



Coriolis effect on free convection 2013 

lar velocity of the rotating box, v. is the kinematic 
viscosity of the fluid and B. is the thermal expansion 
coefficient. 

Two sets of top and bottom boundary conditions 
are considered while all the sidewalls are kept perfectly 
insulated. 

(a) Boundary conditions-set 1 (B.C. set 1) : perfect/y 
conducting top and bottom wall 

z=O: T=O and z=l: T=O. (6) 

(b) Boundary conditions-set 2 (B.C. set 2) : perfectly 
conducting top wall and adiabatic bottom wall 

z=o: 
dT 
-=0 and z=l: T=O. 
i3Z 

(7) 

A third set of boundary conditions representing z = 0 : 
T = 0 and z = 1 : aT/az = 0 is implicitly included in 
B.C. set 2, equation (7) by using the transformation 
of coordinates z’ = 1 -z leading to a solution which 
is the mirror image (just up side down) of the solution 
for B.C. set 2. It should be mentioned that in most of 
the practical applications of flows in rotating porous 
media the Ekman number is usually much greater 
than 1 and in some applications it is 0 (1). The sig- 
nificance of the centrifugal force when compared with 
the gravity is given by the ratio wfL./g.. Moreover, 
the present problem leads to a basic unconditional 
convection driven by the centrifugal force which is 
perpendicular to the temperature gradient. The gravity 
is parallel to the temperature gradient and therefore 
gravity driven convection becomes possible only for 
negative temperature gradients (heating from below) 
and beyond a critical value of the gravity related Ray- 
leigh number. 

The partial differential equations (l)-(5) form a 
nonlinear coupled system. Their coupling is a result 
of two mechanisms, namely : the Coriolis acceleration 
and the free convection. While the Coriolis effect 
causes a linear form of coupling between the hori- 
zontal components of the specific flowrates, the free 
convection coupling between equation (2) and the 
energy equation (5) introduces the non-linearity. 

3. METHOD OF SOLUTION 

To obtain an analytical solution to this problem the 
dependent variables, q = u&+z$+ WC, (G,, GY and C, 
are unit vectors in the x, y and z directions, respec- 
tively), T and p are expanded in a double power series 
in terms of two small parameters representing the 
reciprocal Ekman number in porous media and the 
aspect ratio of the domain (Ek >> 1, a << l), in the 
form 

As all the boundaries are rigid the solution must obey 
the impermeability conditions there, i.e. q * 6, = 0 on 
the boundaries, where 8, is a unit vector normal to the 

boundary. The thermal boundary conditions at the 
sidewalls are: VT*& = 0, representing the insulation 
condition on these walls, while the thermal boundary 
conditions at the top and bottom boundaries are as 
specified in equation (6) for B.C. set 1 or equation (7) 
for B.C. set 2. By introducing the expansion (8) into 
equations (l)-(5) a hierarchy of partial differential 
equations is obtained for the different orders. 

3.1. The leading order 
To leading order the zero powers of a”’ and Ek-” 

are used, which yields a reduced set of equations. At 
this order v,, = w,,, = 0 and the energy equation (5) 
becomes 

d2T0, 
dz2 + 1 = 0 (9) 

leading to the following solutions for T,, cor- 
responding to the two sets of boundary conditions 

(a) for boundary conditions-set 1 

T,, = ;z(l -z); (10) 

(6) for boundary conditions-set 2 

T,, = t(l -z’). (11) 

Accordingly equations (2)-(4) give 

(12) 

By assuming that u,, has the form uoO = xi,(z), sub- 
stituting it and T, from equations (10) and (11) into 
equation (12) and integrating yields 

(a) for boundary conditions-set 1 

Ra, 
i,, =--z(z-l)+C,; 

2 

(b) for boundary conditions-set 2 

(13) 

(14) 

where C, and C, are constants of integration which 
are evaluated by using the integral condition stating 
that the net flowrate over any cross section is zero, i.e. 

5 

1 
[,dz=O (15) 

0 

leading to the following solutions for u,, : 

(a) for boundary conditions-set 1 

(6) for boundary conditions-set 2 

(17) 

The graphical description of the leading order solu- 
tions T,, [equations (10) and (1 I)] and u,,/xRa, 
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[equations (16) and (17)f for the corresponding sets 
of boundary conditions is presented in Fig. 2. These 
solutions represent the free convection in the core 
region, i.e. far from the sidewalls x. = 0 or x. = L.. 
The solution next to the sidewalls at x = 0 and x = 1 
can be evaluated using a boundary layer matching 
method as suggested by Bejan and Tien [9], Cormack 
et al. [ 10, 111 and Imberger [ 121. Such a matching 
procedure based on the method of integral of momen- 
tum was applied by Vadasz [l] to the corresponding 
problem without heat generation. 

3.2. First order in Ek-” 
As the main objective of this paper is to investigate 

the Coriolis effect on the free convection, the following 
analysis focuses on the solution to order 1 in Ek-” 
and to order 0 in d”. Therefore, the corresponding 
equations are presented in the form 

au01 I aw,,=, 
ay a2 (18) 

u aPol-Ra XT fv apol=o. !?!Lo 
01 = - ax w 01 00; ay , aZ 

(19) 

aZTo, + a’T0, dToo 
- -=WOl~. 

ay2 a22 
(20) 

To obtain a solution for uo, and wo, one should refer 
to the equations at orders 1 in am and 1 in Ek-” leading 
to 

ap,, 
vo, = ---uoo; 

ap,, 
ay wo, = --. 

aZ (21) 

The pressure is eliminated from these equations by 
taking the derivatives a/dz and a/ay of vo, and wo, in 
equation (21), respectively and subtracting. By intro- 
ducing the stream function to satisfy identically equa- 
tion (18), i.e. uo, = d$o,/dz, wo, = -atjo,/ay, one 
obtains 

wol + wet auoo - -_=-- 
ay2 az2 a2 . (22) 

The sequence of operations applied for the solution 
at this order is as follows : 

(1) 

(2) 

(3) 

(4) 
(5) 

(6) 

substitution of uoo from the leading order solu- 
tions (16) and (17) into equation (22) ; 
analytical solution of equation (22) for lLo, (sub- 
ject to the impermeability boundary conditions 
on the rigid walls, i.e. $o, = 0 V 0, = 0,l; z = 0,l)) 
and its corresponding derivatives uo, and wo, ; 
substitution of wo, (evaluated in step (2)) and Too 
from the leading order solutions (10) and (11) 
into equation (20) ; 
analytical solution of equation (20) for To, ; 
substitution of To, (evaluated in step (4)) and 
the leading order solution uoo (see text preceding 
equation (9)) into equations (19) ; and 
analytical solution of equations (19) for uo, . 

This sequence of operations leads to the following 
solutions for tie, and consequently for vo, and wo,. 

(a) For boundary conditions-set 1 

$0, = -- 
4Ra,x .f 

rr4 
.f s” [(2i- l)rcy] sin [2jrrz] 

i= I j= 1 j(2i- 1)[4j2 + (2i- l)‘] 

ati,, 8Ra,x 
v --=_- 0, - aZ 713 

xfc 
m sin [(2i- l)ny] cos [2jn;z] 

i= 1 j= 1 (2i- 1)[4j2 + (2i- l)‘] 

a+,, 4Ra,x wo, = --=--- 
ay n3 

m cos [(2i- l)rcy] sin [2j7r.z] 
x J, ,J, j[4j2 + (2i- l)‘] 

(23) 

(24) 

(25) 

(b) For boundary conditions-set 2 

a*ol 8 Ra,x --=-- 
vOi-az 7L3 

(26) 

x 2 2 C-1) ‘+ ’ sin [(2i- 1)7ry] cos brtz] (27) 
i=, j=l (2i- l)[i2 f (2i- I)‘] 

a+,, 8Ra,x wo, = --= -~ 
ay n’ 

xf p ‘+I cos [(2i- l)ny] sin ~rrz]~ (28) 

i=l j-1 j[i' + (2i- l)‘] 

Substitution of wo, from equations (25) and (28) into 
equation (20), and of Too from equations (10) and 
(11) into equation (20) yields a Poisson type of equa- 
tion for To, a Its solution was obtained analytically by 
using the method of separation of variables and is 
presented in the form 

(a) for boundary conditions-set 1 

To, = Ra,x t F bik cos [(2i- l)lry] sin [kxz] (29) 
i=, k=, 

where 

bik = - 
32k 

n5[(2i- l)‘+k*] 

xc 
m [2(-l)‘+’ +I(4j2-k2)‘~‘l-‘l; (301 

,= I [4j2 + (2i- I)‘] 
Ifki2 

(b) for boundary conditions-set 2 

T,,, = Ra,x f f b,cos[(2i- I)ny]cos F 
i=, kl, i 1 

(31) 
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where 

Xf (-l)j+~+‘(4j~+kq 

,= I j[j’ + (2i- 1)“](2j-k)2(2j+k)2 ’ 
(32) 

To evaluate uO, the leading order solution D,,~ = 0 and 
T,,, given by equations (29) and (31) are substituted 
into equations (19) leading to 

Go, u ,,, = -x-Ra,xT,,. 

Following equation (19) the pressure gradient dp, ,/dx 
is represented as an ordinary derivative. Any solution 
for u,,r must satisfy an integral condition of mass 
conservation stating that the net flowrate over any 
Cross section is zero, i.e. 

uO, dydz = 0. (34) 

Substituting equation (33) for u,,, into the integral in 
equation (34) yields 

I 1 

dy dz + Ra,x ss T,,, dydz = 0. (35) 
0 0 

The first integral in equation (35) equals dp, , /dx, while 
the second integral vanishes for both set 1 and set 2 of 
boundary conditions. As a result it can be established 
from equation (35) that dp, , /dx = 0. Substituting this 
result into equation (33) gives the solution of wO, in 
the form 

uO, = -Ra,xTO, (36) 

where T,,, is given by equation (29) for B.C. set 1 and 
by equation (31) for B.C. set 2. 

3.3. Combined solution 
Finally the complete solution up to and including 

order 1 in Ek-” is obtained by substitution of the 
leading order and first order solutions into equation 
(8) and is presented in the form 

(a) for boundary conditions-set 1 

u - = _‘[,2 
Ra,x 2 - 

-z+k] 

- siz kz, bik cos [(2i- l)ny] sin [knz] (37) 

u = c38j 8Rw .f f ~~~~(~~-~)~YIco~[~~~zI 
n’Ek i= I j=l (21- 1)[4j2 +(2i- I)‘] 

(39) 

T = +z[l -z] 

+ Tjz kfr bil, cos [(2i- l)ny] sin [kxz] (40) 

where bik for this set of boundary conditions is the 
coefficient given by equation (30). 

(6) For boundary conditions--set 2 

& = gzq 
0 

- z ,g 2 bik cos [(2i- l)~y] cos rq] (41) 
,--I k-l 

u=ygg jjc-l) 

I+’ sin [(2i- l)ny] cos [jcz] 

(2i- l)[j2 + (2i- l)‘] 

(42) 
. 

(43) 

T = ;[l -z’] 

Ra,x m oo 
+ -&, ,;, bik ~0s K2i- l)n~lcos $ 

[ 1 (44) 

where bik for this set of boundary conditions is the 
coefficient given by equation (32). 

From these solutions one observes that the Coriohs 
effect appears as a correction of the free convection 
solutions as far as u and Tare concerned. However it 
generates a flow in the yz plane which is perpendicular 
to the original free convection flow. Under the asymp- 
totic conditions prevailing in this investigation the 
flow in the yz plane can be represented by a stream 
function I(I = Ek-I&,, where $,,, is the solution given 
by equations (23) and (26) for the first and second set 
of boundary conditions, respectively. Another obser- 
vation which can be made from the combined solu- 
tions represented by equations (37)-(44) is that in 
the context of the asymptotic conditions the Coriolis 
effect on free convection is controlled by the combined 
dimensionless group r~ = Ra,Ek- ‘, i.e. 

Ra, 2/L&& w,‘L.klM, 
*=Ek= a,*tl,.v:@ . 

(45) 

The validity of the asymptotic expansion is restricted 
too, by the values of e and the expansion is valid for 
Ek >> 1 as long as the value of a is small as well. 

4. RESULI’S AND DISCUS810N 
The analytical solutions obtained in the previous 

section are presented graphically in Figs. 2-6 and their 
significance is discussed in this section. 

The leading order core solutions uOo/Raox and T,,, 
are presented in Fig. 2. The horizontal flow in the x 
direction, Fig. 2(a) and (c), represents the free 
convection resulting From the temperature gradient, 
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(b) 

u,/xRa, 

0.25 

0 
-( 2 0 0.2 0.4 -0 0.3 0.6 

uJxRam 
TcKl 

Fig. 2. Graphical description of the free convection flow and temperature fields at the leading order ; (a) 
the horizontal x component of the specific flowrate uoO for B.C. set 1; (b) the temperature profile r,, for 
B.C. set 1; (c) the horizontal x component of the specific flowrate uoO for B.C. set 2; (d) the temperature 

profile T,, for B.C. set 2. 

Fig. 2(b) and (d), created by the uniform heat gen- 
eration. Figure 2(a) and (b) corresponds to B.C. set 
1 while Fig. 2(c) and (d) corresponds to B.C. set 2. 
According to the results corresponding to B.C. set 1 
a core flow moving in a direction opposite to the 
centrifugal acceleration is generated by the high tem- 
peratures in this core region (z E [0.211, 0.7891) while 
a flow in the same direction as the centrifugal accel- 
eration is obtained next to the boundaries (z E [O., 
0.21 l] and z E tO.789, 1.1). Regarding the results cor- 
responding to B.C. set 2, a flow opposite to the direc- 
tion of the 6entrifugal acceleration is obtained in the 
bottom hot part of the domain (ZE [O., 0.5771), whiie 
the flow changes direction in the colder upper part of 

the domain (ZE [0.577, 1.1). The Coriolis effect is felt 
at order 1 in Ek-” leading to secondary circulation in 
a plane orthogonal to the leading free convection 
plane. As a result, the leading order convection occur- 
ring in the xz plane induces through the Coriolis effect 
a secondary motion in the yz plane. The graphical 
description of this secondary flow field at any cross 
section, represented by constant values of J/n4/40x 
and corresponding to B.C. set 1, is presented in Fig. 
3. Two vortices are a result of the sign variation of the 
temperature gradient at the leading order, the bottom 
vortex rotating clockwise while the top vortex rotates 
anti-clockwise. A’ steeper vertical gradient of the 
stream function, representing a stronger horizontal 
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0 0.2 0.4 0.6 0.8 1 DY 
Fig. 3. Graphical description of the flow field at any cross 
section represented by constant values of @c4/40x and cor- 
responding to B.C. set 1. Ten streamlines equally divided 
between their minimum value of (@r4/4ux),, = - 0.188 and 

their maximum value of ($n4/4ax),, = 0.188. 

\ 

0.8._____---~ 

0.6. 

0.4. 

0.2.~; 

Ol 
0 0.2 0.4 0.6 0.8 1 

{ * Y 

Fig. 4. Graphical description of the temperature field T on 
the y.z plane corresponding to B.C. set 1 and to ux = 0.5. 
Five isotherms equally divided between T,,,,, = 0 and 

r,,, = 0.149. 

flow, is observed next to the walls at z = 0 and z = 1, 
while the gradient becomes moderate as one moves 
away from these boundaries. The reason behind this 
result, which is asymmetric with respect to the center 
of the vortex, lies in the forcing term of equation (22). 
There, it is clear that the stream function in the yz 
plane, $oI, is affected by the gradient of the flow at 
the leading order, i.e. (-&,,/a~). Since this gradient 
is steep at z = 0 and z = 1, see Fig. 2(a), the same 
applies for the stream function as well. As a result of 
this circulation the temperature distribution is affected 
significantly. The graphical description of the tem- 
perature field, T, on the yz plane corresponding to 
B.C. set 1 and for cx = 0.5 is presented in Fig. 4. The 
effect of convection is apparent in this figure as the 
distortion of the isotherms from the parallel hori- 

Fig. 5. Graphical description of the flow field at any cross 
section represented by constant values of 3/n4/8ux and cor- 
responding to B.C. set 2. Five strea@nes equally divided 
between their minimum value of ($72*/8ax),, = 0 and their 

maximum value of ($7r4/80x),,, = 0.489. 

Z 

0 8 

I 1 
0.6. 1 

0.4, 

0.2-J-----c-c. 
0; i 

0 0.2 0.4 0.6 0.8 1 DY 

Fig. 6. Graphical description of the temperature field T on 
the yz plane corresponding to B.C. set 2 and to ux = 2. Eight 
isotherms equally divided between T,,, = 0 and 

T,,,,, = 0.525. 

zontal form prevailing to a conduction regime is sig- 
nificant. A totally different secondary motion in the 
yz plane is obtained for B.C. set 2. The graphical 
description of this secondary flow field at any cross 
section, represented by constant values of $n4/8ax 
and corresponding to B.C. set 2 is presented in Fig. 5. 
A single vortex rotating anti-clockwise represents the 
solution according to set 2 of boundary conditions, 
the reason of which is the leading order temperature 
distribution being monotonic, see Fig. 2(d). In this 
case a steep vertical gradient of the stream function, 
representing a stronger horizontal flow, is observed 
next to the top wall while the gradient becomes mod- 
erate as one moves away from this wall. The vertical 
asymmetry of the flow associated with this result is 
caused by the forcing term in equation (22). Since 
according to equation (22) the stream function in the 
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yz plane is affected by the gradient of the horizontal 
flow at the leading order, i.e. (- &+,,/a~) and the latter 
is steep at z = 1 am&becomes moderate far away from 
this wall, see Fig. 2(c), the same applies for the stream 
function as well. The effect of this secondary flow on 
the temperature field in the yz plane is presented in 
Fig. 6 where the effect of convection on the isotherms 
is felt as well. It is worthwhile to mention that the 
separation between the flow in the yz plane and the 
convection in the x direction was possible due to the 
large Ekman number considered. Nevertheless, in gen- 
eral, rotating flows have a tendency towards two 
dimensionality, as shown by Greenspan [13] for ro- 
tating flows in pure fluids (non-porous domains) and 
by Vadasz [14] for rotating flows in porous media. 

5. CoNcLw#)IJs 

A three-dimensional analytical solution demon- 
strating the Coriolis effect on free convection in a long 
rotating porous box subject to uniform heat gen- 
eration was presented for high values of the porous 
media Ekman number. Free convection is a result of 
the internal heat generation which produces tem- 
perature gradients perpendicular to the centrifugal 
body force. Secondary circulation was obtained in a 
plane perpendicular to the leading free convection 
plane in the form of one or two vortices associated 
with the type of top and bottom boundary conditions 
considered. 
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